Outline:

- Why we use need computer codes?
- Classification of Cosmological Codes
- CAMB code
- CosmoMC code

WHY COMPUTER CODES?

- Complexity of calculations
- Using observational data
- Time is valuable !

CLASSIFICATION

- Map generation and processing codes
- Boltzmann codes
- Parameter estimator codes

HEALPix

HEALPix is an acronym for Hierarchical qual rea iso atitude Pirelization of a sphere

BOLTZMANN CODES

- CAMB
- CMBEASY
- CLASS II
- CMBAns
- CosmoLib
- RECFAST

REQUIRED PHYSICS

Euler/continuity δ_{b}, δ_{c} Baryon, CDM density fluctuation equ.
v_{b}, v_{c} Baryon, CDM velocity fluctuation

EINSTEIN-BOLTZMANN EQUATIONS

EINSTEIN-BOLTZMANN EQUATIONS

Perturbed metric $d s^{2}=-(1+2 \Psi) d t^{2}+a^{2}(t)(1+2 \Phi) d x^{2}$

$$
\left\{\begin{array}{l}
\text { 8) } k^{2} \Phi+3 \frac{\dot{a}}{a}\left(\dot{\Phi}-\Psi \frac{\dot{a}}{a}\right)=4 \pi G a^{2}\left[\rho_{C D M} \delta+\rho_{b} \delta_{b}+4\left(\rho_{\gamma} \Theta_{0}+\rho_{v} \mathcal{N}_{0}\right)\right] \\
\text { 9) } k^{2}(\Phi+\Psi)=-32 \pi G a^{2}\left(\rho_{\gamma} \Theta_{2}+\rho_{v} \mathcal{N}_{2}\right)
\end{array}\right.
$$

INITIAL CONDITION

$$
\begin{aligned}
& \Theta_{0}=\frac{1}{2} \Phi \\
& \delta=\delta_{b}=\frac{3}{2} \Phi, \\
& \Theta_{1}=-\frac{k}{6 \mathcal{H}} \Phi \\
& v=v_{b}=\frac{k}{2 \mathcal{H}} \Phi . \\
& 3 \Theta_{1}+v_{b}=0 \\
& \quad P_{\Phi}(k)=\left.\frac{8 \pi}{9 k^{3}} \frac{H^{2}}{\epsilon m_{p l}^{2}}\right|_{a H=k} \equiv \frac{50 \pi^{2}}{9 k^{3}}\left(\frac{k}{H_{0}}\right)^{n-1} \delta_{H}^{2}\left(\frac{\Omega_{m}}{D_{1}(a=1)}\right)^{2}
\end{aligned}
$$

HiERARCHY EQUATIONS

$$
\begin{aligned}
& \Theta_{0}^{\prime}=-\frac{k}{\mathcal{H}} \Theta_{1}-\Phi^{\prime} \\
& \Theta_{1}^{\prime}=\frac{k}{3 \mathcal{H}} \Theta_{0}-\frac{2 k}{3 \mathcal{H}} \Theta_{2}+\frac{k}{3 \mathcal{H}} \Psi+\tau^{\prime}\left[\Theta_{1}+\frac{1}{3} v_{b}\right] \\
& \Theta_{l}^{\prime}=\frac{l k}{(2 l+1) \mathcal{H}} \Theta_{l-1}-\frac{(l+1) k}{(2 l+1) \mathcal{H}} \Theta_{l+1}+\tau^{\prime}\left[\Theta_{l}-\frac{1}{10} \Pi \delta_{l, 2}\right], \quad(l \geq 2) \\
& \Theta_{P 0}^{\prime}=-\frac{k}{\mathcal{H}} \Theta_{1}^{P}+\tau^{\prime}\left[\Theta_{0}^{P}-\frac{1}{2} \Pi\right] \\
& \Theta_{P l}^{\prime}=\frac{l k}{(2 l+1) \mathcal{H}} \Theta_{l-1}^{P}-\frac{(l+1) k}{(2 l+1) \mathcal{H}} \Theta_{l+1}^{P}+\tau^{\prime}\left[\Theta_{l}^{P}-\frac{1}{10} \Pi \delta_{l, 2}\right], \\
&
\end{aligned}
$$

HIERARCHY EQUATIONS

$$
\begin{aligned}
& \mathcal{N}_{0}^{\prime}=-\frac{k}{\mathcal{H}} \mathcal{N}_{1}-\Phi^{\prime} \\
& \mathcal{N}_{1}^{\prime}=\frac{k}{3 \mathcal{H}} \mathcal{N}_{0}-\frac{2 k}{3 \mathcal{H}} \mathcal{N}_{2}+\frac{k}{3 \mathcal{H}} \Psi \\
& \mathcal{N}_{1}^{\prime}=\frac{l k}{(2 l+1) \mathcal{H}} \mathcal{N}_{l-1}-\frac{(l+1) k}{(2 l+1) \mathcal{H}} \mathcal{N}_{l+1}, \quad(l \geq 2) \\
& \delta^{\prime}=\frac{k}{\mathcal{H}} v-3 \Phi^{\prime} \\
& v^{\prime}=-v-\frac{k}{\mathcal{H}} \Psi \\
& \delta_{b}^{\prime}=\frac{k}{\mathcal{H}} v_{b}-3 \Phi^{\prime} \\
& v_{b}^{\prime}=-v_{b}-\frac{k}{\mathcal{H}} \Psi+\tau^{\prime} R\left(3 \Theta_{1}+v_{b}\right) \\
& \Phi^{\prime}=\Psi-\frac{k^{2}}{3 \mathcal{H}^{2}} \Phi+\frac{H_{0}^{2}}{2 \mathcal{H}^{2}}\left[\Omega_{m} a^{-1} \delta+\Omega_{b} a^{-1} \delta_{b}+4 \Omega_{r} a^{-2} \Theta_{0}+4 \Omega_{\nu} a^{-2} \mathcal{N}_{0}\right] \\
& \Psi=-\Phi-\frac{12 H_{0}^{2}}{k^{2} a^{2}}\left[\Omega_{r} \Theta_{2}+\Omega_{\nu} \mathcal{N}_{2}\right]
\end{aligned}
$$

CAMB

- Code for Anisotropies in the Microwave Background
- Temperature power spectrum
- Curved and flat models
- Matter power spectrum
- Massive neutrino models
- Scalar, Tensor and vector perturbations

$$
l, C_{T T}, C_{E E}, C_{B B}, C_{T E}
$$

TEMPERATURE POWER SPECTRUM

PARAMETERS EFFECTS

S.Dodelson,'Modern Cosmology"

COSMOLOGICAL PARAMETER ESTIMATOR

- CosmoMC
- AnalyzeThis
- SCoPE

Power Spectrum

COSMOLOGICAL IMONTECARLO

CosmoMC is a Fortran 2008 Markov-Chain Monte-Carlo (MCMC) engine for exploring cosmological parameter space, together with Fortran and python code for analyzing Monte-Carlo samples and importance sampling. The code does brute force (but accurate) theoretical matter power spectrum and C_{l} calculations with CAMB.

Pubic Code: http://cosmologist.info/cosmomc/

MAXIMUM-LIKELIHOOD ESTIMATION

- Method of estimating the parameters of a model

