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Outline:
Why	  we	  use	  need	  computer	  codes?	  

Classi6ication	  of	  Cosmological	  Codes	  

CAMB	  code	  

CosmoMC	  code



Why computer codes? 
• Complexity of calculations 

• Using observational data 

• Time is valuable !



Classification

• Map generation and processing codes 

• Boltzmann codes 

• Parameter estimator codes



CMB data analysis

Sky Measurement Raw	  data

Time-‐ordered	  
data

Sky	  map Multi-‐frequency	  	  maps

Cleaning

M
ap	  m

aking

Foreground	  removal

Power	  Spectrum



Map generation and 
analysis

• HEALPix 

• GLESP 

• Commander 2 

• WeightMixer



HEALPix

HEALPix is an acronym for Hierarchical Equal Area isoLatitude Pixelization of a sphere



Boltzmann codes

• CAMB 

• CMBEASY 

• CLASS II 

• CMBAns 

• CosmoLib 

• RECFAST



ingredients for cosmic soup
Boltzmann	  equation

[ ]=df C f
dt



Required physics

Ψ Newtonian potential

Φ Spatial  curvature
ΘT Photon temperature fluctuation

ΘP Photon polarization fluctuation

δb,δc Baryon, CDM density fluctuation

vb ,vcBaryon, CDM velocity fluctuation

{Einstein equ.

{
{

Boltzmann equ.

Euler/continuity 
equ.



Einstein-Boltzmann equations

1) !ΘT + ikµΘT + !Φ + ikµΨ = − !τ[Θ0 −Θ + µvb −
1
2
P2(µ)Π]

2) !ΘP + ikµΘP = − !τ[−ΘP +
1
2

(1−P2(µ))Π]

Π =ΘT 2 +ΘP2 +ΘP0

3) !N + ikµN + !Φ + ikµΨ = 0

Liouville	  term Collision	  term

4) !δ c = −ikvc − 3 !Φ

5) !δ b = −ikvb − 3 !Φ 
6) !vc = −Hvc − ikΨ

7) !vb = −Hvb − ikΨ +
!τ
R

[vb + 3iΘ1],
1
R
≡

4ργ
(0)

3ρb
(0)

{Einstein+Boltzmann equ.

{EB equs. with fluid 
approximation 

 (Euiler+continuity)

Photon/Neutrinos

Baryon/CDM



Einstein-Boltzmann equations

{
Gravity

8) k 2Φ + 3
!a
a

( !Φ−Ψ
!a
a

) = 4πGa2[ρCDMδ + ρbδ b + 4(ργΘ0 + ρνN0 )]

9) k 2(Φ +Ψ) = −32πGa2(ργΘ2 + ρνN2 )

ds2 = −(1+ 2Ψ)dt 2 + a2 (t)(1+ 2Φ)dx2Perturbed metric



Initial condition
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Using x as the time variable and rearranging the equa-
tions, we obtain their final form:

Θ′
0 = − k

HΘ1 − Φ′ ,

Θ′
1 =

k

3HΘ0 −
2k

3HΘ2 +
k

3HΨ + τ ′
[

Θ1 +
1

3
vb

]

,

Θ′
l =

lk

(2l + 1)HΘl−1 −
(l + 1)k

(2l + 1)HΘl+1

+ τ ′
[

Θl −
1

10
Π δl,2

]

, l ≥ 2 ,

Θ′
P0 = − k

HΘP
1 + τ ′

[

ΘP
0 − 1

2
Π

]

,

Θ′
Pl =

lk

(2l + 1)HΘP
l−1 −

(l + 1)k

(2l + 1)HΘP
l+1

+ τ ′
[

ΘP
l − 1

10
Π δl,2

]

, l ≥ 1 ,

N ′
0 = − k

HN1 − Φ′ ,

N ′
1 =

k

3HN0 −
2k

3HN2 +
k

3HΨ ,

N ′
l =

lk

(2l + 1)HNl−1 −
(l + 1)k

(2l + 1)HNl+1 , l ≥ 2 ,

δ′ =
k

Hv − 3Φ′ ,

v′ = −v − k

HΨ ,

δ′b =
k

Hvb − 3Φ′ ,

v′b = −vb −
k

HΨ + τ ′R (3Θ1 + vb) ,

Φ′ = Ψ − k2

3H2
Φ +

H2
0

2H2

[

Ωma−1δ + Ωba
−1δb

+ 4Ωra
−2Θ0 + 4Ωνa

−2N0

]

,

Ψ = −Φ − 12H2
0

k2a2

[

ΩrΘ2 + ΩνN2

]

. (22)

The expression for Ψ is just an algebraic equation, so
this expression should simply be inserted into all the
other equations when needed. Also, the expression for Φ′

should be calculated first and used in all the other equa-
tions, so that we obtain a system of differential equations
suitable for the Runge-Kutta method. Note that the only
dimensional quantities in (22) are the wavenumber k and
the Hubble function H. The natural unit for k is there-
fore H0. For now, we will ignore the neutrinos, and return
to them later in section VII C.

C. Initial conditions

In order to integrate (22) numerically, we need some
initial conditions at the starting time xi = ln ai, where
we choose ai = 10−8. Here we consider only adiabatic

initial conditions, as derived in [11]:

Θ0 =
1

2
Φ ,

δ = δb =
3

2
Φ ,

Θ1 = − k

6HΦ ,

v = vb =
k

2HΦ . (23)

The initial condition for Φ acts as a normalization, and
can be chosen to be Φ = 1 2. Note that we get

3Θ1 + vb = 0 . (24)

At early times the optical depth τ ′ is very large, meaning
that to the lowest order, everything that is multiplied by
τ ′ in (22) should be zero. This implies Θl = 0 for l ≥ 2,
and ΘP

l = 0 for all l. However, when integrating (22)
numerically, we will need the lowest order non-zero ex-
pressions for all the multipoles (including polarization).
And the equations seem to be most well-behaved if we
also use these very small, but non-zero expressions as
initial conditions. We therefore derive these expressions
here (see also [15, 16]).

Very early, the quantity ϵ ≡ k/(Hτ ′) is a small number,
and can therefore be used as an expansion parameter for
the multipole hierarchy. As we will see, Θl ∼ ϵΘl−1 for
l ≥ 2, ΘP

0 ∼ ΘP
2 ∼ Θ2, ΘP

1 ∼ ϵΘ2, and ΘP
l ∼ ϵΘP

l−1

for l ≥ 3. Assuming that this is true 3, and also that
the derivatives of the multipoles are of the same order as
the multipoles themselves, we can compare the order of
magnitude of the different terms in (22). From Θ′

P0 and
Θ′

P2 we get the equations ΘP
0 − Π/2 = ΘP

2 − Π/10 = 0,
with the result

ΘP
0 =

5

4
Θ2 , ΘP

2 =
1

4
Θ2 , ⇒ Π =

5

2
Θ2 . (25)

Using this in the equation for Θ′
2 we then get

Θ2 = − 8k

15Hτ ′Θ1 , (26)

and from the equation for Θ′
P1

ΘP
1 = − k

4Hτ ′Θ2 . (27)

2 This does not mean that the perturbation Φ of the gravitational
field has the value 1 (remember that Φ is a small quantity), but
rather that all the other perturbation variables are normalized
to the value of Φ at x = xi. We also ignore the k-dependence of
Φ at this point, and instead put it back ”by hand” in (43).

3 This does not lead to any ”circular logic”, since we only assume a
certain asymptotic behavior, and then derive explicit expressions
proving that the initial assumption was correct.
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Hierarchy equations
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Hierarchy equations



CAMB

• Code for Anisotropies in the Microwave Background

• Temperature power spectrum

• Curved and flat models

• Matter power spectrum

• Massive neutrino models

• Scalar, Tensor and vector perturbations

l,  CTT ,  CEE ,  CBB ,  CTE



Temperature power spectrum



parameters effects

S.Dodelson,”Modern Cosmology”



Cosmological parameter 
estimator

• CosmoMC 

• AnalyzeThis 

• SCoPE

CMB+SN'contours/

56#



Power Spectrum



Power Spectrum



Power Spectrum



Power Spectrum



Power Spectrum



Power Spectrum



Power Spectrum



Cosmological MonteCarlo
CosmoMC	  is	  a	  Fortran	  2008	  Markov-‐Chain	  Monte-‐Carlo	  (MCMC)	  engine	  for	  exploring	  
cosmological	  parameter	  space,	  together	  with	  Fortran	  and	  python	  code	  for	  analyzing	  
Monte-‐Carlo	  samples	  and	  importance	  sampling.	  The	  code	  does	  brute	  force	  (but	  accurate)	  
theoretical	  matter	  power	  spectrum	  and	  Cl	  calculations	  with	  CAMB.

Pubic Code: http://cosmologist.info/cosmomc/ 

http://cosmologist.info/cosmomc/


Maximum-Likelihood Estimation

• Method of estimating the parameters of a model 


